

7426

BOARD DIPLOMA EXAMINATION, (C-20) OCTOBER/NOVEMBER—2023 DCE – FOURTH SEMESTER EXAMINATION

QUANTITY SURVEYING—I

Time: 3 Hours] [Total Marks: 80

PART—A

 $3 \times 10 = 30$

- **Instructions:** (1) Answer **all** questions.
 - (2) Each question carries **three** marks.
 - (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
 - 1. Write the units for the following:
 - (a) Fencing
 - (b) Jungle clearance
 - (c) Sand filling
 - State the difference between detailed estimate and abstract estimate. 2.
 - 3. Prepare the total cost of the building by plinth area method with the following data:
 - Plinth area of the building 500 m²
 - (b) Plinth area rate ₹18,000
 - 25% of building cost is allowed for different provisions of water (c) supply, sanitation, electrical installations, PS and contingencies etc. altogether.
 - **4.** Calculate the quantity of cement concrete 1:2:4 rquired for RCC lintel over doors of a residential building. There are 8 doors of size 1.20×2.10 m. Thickness of wall is 300 mm and thickness of lintel is 120 mm and a bearing on either side of door is 180 mm.

- From the simple steel truss shown in the figure below, find the steel 5. required for the following:
 - (a) Principal rafter AC @ 0.110 kN/m
 - (b) Tie EG @ 0.056 kN/m

- 6. Write a short note on standard schedule of rates.
- **7**. Calculate the cement required in bags for preparing CC 1:5:10 using 40 mm HBG metal for 30 m³ work.
- 8. Find the cost of material at site for the following:

S.No.	Material	cost at source	Per	Lead	Conveyance charges per km	
					МT	
1	40 mm HBG metal	₹500	1 m ³	35 km	₹9·50 per cu.m	

- 9. Define the terms lead and lift used in road formation and give their initial values.
- 10. The details of road of 1.50 km length AB are given below. Depth of embankment at A and B are 1.10 m and 2.10 m respectively, side slopes 1:1 and width of road at top is 8.5 m. Calculate the volume of earth work by mean sectional area method.

PART—B $8 \times 5 = 40$

[Contd...

- **Instructions:** (1) Answer **all** questions.
 - (2) Each question carries **eight** marks.
 - (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- 11. Prepare an approximate estimate for a shopping complex of Municipal Corporation with the following data: Plinth area - 900 m² per floor

Height of each floor - 3 m

No. of stories - GF + 3

Cubic content rate – ₹9,000 per m³

Provisions are as follows:

(i) Water supply and sanitation = 6% of building cost
(ii) Electrification = 8% of building cost
(iii) Fluctuations of rates = 7% of building cost
(iv) Contractor's profit = 12% of building cost
(v) PS and contingencies = 3% of building cost

(OR)

- (b) State and explain the methods of preparing approximate estimtes.
- **12.** (a) Prepare the detailed estimate for the following items of works from the figure 1:
 - (i) Cement concrete (1:4:8) in foundation bed
 - (ii) RR masonry in CM 1:6 for foundation
 - (iii) RCC 1:1.5:3 for RCC slab

- (b) Prepare the detailed estimate for the following items of works from the figure 1:
 - (i) Earth work excavation for foundation
 - (ii) Internal plastering in CM 1:4 without deductions
 - (iii) RR masonry in CM 1:6 for basement
- **13.** (a) For the building shown in Fig.2, calculate the quantities of the following items of work:
 - (i) RCC (M20) using HBG metal for all column footings
 - (ii) Brick masonry in CM 1:4 without deductions

(OR)

- (b) For the building shown in Fig.2, calculate the quantities of the following items of work:
 - (i) RCC (M20) using HBG metal for all columns
 - (ii) Plastering with CM (1:3) without deductions

Fig.2

14. (a) Prepare a data sheet and calculate the cost of the items given below:

(i) Cement concrete (1:4:8) using 40 mm HBG metal — 1 m³

(ii) RR masonry in CM $(1:6) - 1 \text{ m}^3$

Materials and labour required for:

Cement concrete $(1:4:8) - 1m^3$ RR masonry in CM $(1:6) - 1m^3$

 $0.92 \text{ m}^3 - \text{HBG metal}$ $1.10 \text{ m}^3 - \text{Rought stone}$

 $0.46 \text{ m}^3 - \text{Sand}$ $0.34 \text{ m}^3 - \text{CM} (1:6)$

 0.115 m^3 – Cement 1.80 Nos. – Mason

0.20 Nos. – Mason 2.80 Nos. – Mazdoors

3.20 Nos. – Mazdoors LS sundries

LS sundries

Lead statement of materials:

S.No.	Materials	Rate (₹)	Per	Lead	Conveyance charges
1	40 mm size HBG metal	550	1 m ³	10 km	₹14 per 1 km
2	Sand	450	1 m ³	8 km	₹12 per 1 km
3	Rough Stone	310	1 m ³	5 km	₹10 per 1 km
4	Cement	6,600	1 ton	At site	

Labour charges per day:

(i) Mason 1st class = ₹440

(ii) Mason 2nd class = ₹420

(iii) Mazdoor = ₹350

(iv) Hand mixing charges for CM per m³ = ₹60

(OR)

(b) Prepare the data sheet and calculate the cost for the following items of work:

(i) RR masonry with CM (1:8) unit -1 m^3

1.05 m³ rough stone

 $0.34 \text{ m}^3 \text{ CM } (1:8)$

1.8 Nos. Mason

2.8 Nos. Man mazdoor

LS sundries

(ii) Pointing to RR masonry in CM (1:5) unit -10 m^2

 $0.09 \text{ m}^3 \text{ CM } (1:5)$

2.28 Nos. Mason

0.5 Nos. Man mazdoor

1.1 Nos. Woman mazdoor

LS sundries

Lead statement of materials:

S.No.	Materials	Rate (₹)	Per	Lead	Conveyance charges
1	Rough stone	330	1 m ³	15 km	₹12 per 1 km
2	Sand	95	1 m ³	10 km	₹13 per 1 km
3	Cement	3500	MT	At site	

Labour charges:

(i) Mason = ₹225·00/day

(ii) Men mazdoor = ₹180·00/day

(iii) Women mazdoor = ₹180·00/day

(iv) Mixing charges for CM = $\frac{40.00}{\text{m}^3}$

15. (a) A road embankment has the following data:

Chainage (in m)	0	30	60	90	120	150
RL of ground (in m)	30.80	31.25	31.85	32.25	33.00	35·20

Formation level at chainage zero is 33.00 and having a rising gradient of 1 in 120. Top width of the formation is 10.5 m and side slope 2H: 1V. Assuming that the transverse slope of the ground is in level, calculate the volume of earth by

- (i) Trapezoidal formula
- (ii) Prismoidal formula

(OR)

- (b) From the particulars of a reservoir given below, calculate the capacity of a reservoir between the sill level and MWL of the reservoir by
 - (i) Trapezoidal formula
 - (ii) Prismoidal formula

S.No.	Level (in m)	Area (m ²)	Particulars		
1 42.00		1300	Bed of reservoir		
2	2 44.00		_		
3	3 46.00		Sill level of sluice		
4	4 48.00		_		
5	5 50.00		_		
6	52.00	12000	FTL		
7	54.00	15000	MWL		

PART—C

 $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) The question carries **ten** marks.
- 16. Prepare an estimate for the road from chainage 0 mts to 270 mts without turfing the slopes. Adopt rate of earth work in cutting and filling at ₹19 per m³. The formation width of proposed road is 12 m. Side sloped 1½: 1 for cutting and 2: 1 for filling. The road formation has a uniform falling gradient of 1 in 200. At 0 m chainage the formation level is at ground level. RL of ground level at different chainages are as follows:

Chainage (in m)	0	30	60	120	150	180	210	240	270
RL of ground (in m)	118-60	199.25	199.40	118.85	118.50	117.25	116.80	117.15	117.20

