(Model Paper)

C -23, EC -302

State Board of Technical Education and Training, A. P

Diploma in Electronics and Communication Engineering (DECE)

III Semester

Subject Name: Electronic Circuits-I

Sub Code: EC - 302

Time: 9	90 min	utes Unit Test I Ma:	Max.Marks:40				
		Part-A	16Marks				
Instruc	Instructions: (1) Answer all questions.						
	(2) First question carries four marks, each question of remaining carries to						
1.		e following blanks with one word					
	-	ridge rectifier is a Half wave rectifier (TRUE/FALSE)	(CO1)				
	b) R	ipple factor of half wave rectifier is	(CO1)				
	c) V	Vhat is heat sink	(CO2)				
	d) I	Define h ₁₁	(CO3)				
2.	Comp	pare HWR and FWR	(CO1)				
3.	Defin	e voltage regulation	(CO1)				
4.	List tl	ne types of biasing circuits.	(CO2)				
5.	Defin	e the terms gain and bandwidth of an amplifier	(CO3)				
		Part-B	3×8=24				
Instruc	ctions:	(1) Answer all questions.(2) Each question carries eight marks(3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.					
6.	(a)	Explain the working of full wave bridge rectifier with wave forms (or)	(CO1)				
	(b)	Explain the operation of adjustable voltage regulator	(CO1)				
7.	(a)E	xplain fixed bias circuit (or)	(CO2)				
	(b) E	xplain Self Bias circuit and analyse the stability of self bias	(CO2)				
8.	(a)	Explain the working of two-stage transformer coupled amplifier with circuland explain its frequency response characteristics (or)	uit diagram (CO3)				
	(b)	Explain the operation of Darlington pair with the help of circuit diagram	(CO3)				

(Model Paper)

C-23, EC-302

State Board of Technical Education and Training, A. P **Diploma in Electronics and Communication Engineering (DECE)**

III Semester

Subject Name: Electronic Circuits-I

Sub Code: EC-302

Time: 9	90 m	inutes Unit Test II	Max.Marks:40	
		Part-A	16Marks	
Instruc	tions	• •		
		(2) First question carries four marks, each question of remaining ca	rries three marks	
1.	Fill	the following blanks with one word		
	a)	What is the efficiency of Class B amplifier	(CO4)	
	b)	Negative feedback is used in oscillators (State True/False)	(CO5)	
	c)	How many degrees phase shift is produced by feedback network of	,	
	,	RC phase shift oscillator	(CO5)	
	d)	With the introduction of negative feedback, the gain of an amplifier	, ,	
	•	is decreases (State True/False)	(CO5)	
2.	Cor	mpare Voltage and Power amplifier	(CO4)	
3.	List	any three applications of Class C Amplifiers	(CO4)	
4.	Sta	te the concept of feedback in amplifiers	(CO5)	
5.	Sta	te the conditions (Barkhausen's criteria) for an amplifier to work as an o	scillator (CO5)	
		Part-B	3×8=24	
Instruc	tions	s: (1) Answer all questions. (2) Each question carries eight marks		
		(3) Answer should be comprehensive and the criterion for valuation	n	
		is the content but not the length of the answer.		
6.	(a)	Explain the working of Class-B Push-pull amplifier with circuit diagram		
		(av)	(CO4)	
	(b)	(or) Explain the working of complementary symmetry Push-pull power amp	olifier with circuit	
	(5)	diagram	(CO4)	
7.	(a)	Explain negative feedback amplifier with block diagram and derive the	• •	
		the gain of negative feedback amplifier	(CO5)	
	<i>(</i> 1.)	(or)		
	(b)	Explain the effect of negative feedback on gain, bandwidth, input and	•	
8.	(a)	impedances of an amplifier Explain the working of a Wein bridge oscillator with a circuit diagram a	(CO5) and write the	
o.	(α)	expressions for frequency of oscillations and mention the conditions r		
		sustained oscillations	(CO5)	
		(or)		
	(b)	Explain the working of Colpitts oscillator with a circuit diagram		
		expressions for frequency of oscillations and mention the condit sustained oscillations	(CO5)	
		Sustained Oscillations	(003)	

MODEL PAPER BOARD DIPLOMA EXAMINATIONS C-23, EC-302, ELECTRONIC CIRCUITS –I III SEMESTER SEMESTER END EXAMINATION

TIME:3 HOURS MAX MARKS:80

10×3=30
cceed
(CO1) (CO1)
(CO2)
(CO3)
(CO3)
(CO3)
(CO4)
(CO5)
(CO5)
lator (CO5)
5×10=50
ı
(CO1) (CO1)- 5M (CO2)-5M (CO2)
d (CO3)
reforms (CO4) (CO4) rrite the for (CO5) tages (CO5)

EC-303, DIGITAL ELECTRONICS

Course Code	Course title	No of periods/week	Total no of periods	Marks for FA	Marks for SA
EC-303	Digital Electronics	4	60	20	80

S No	Unit Title	No. of Periods	Weightage of Marks	No. of Short Answer Questions	No. of Essay Questions	COs Mapped
1	Basics of Digital Electronics.	15	26	2	2	CO1
2	Logic Families	7	16	2	1	CO2
3	Combinational Logic circuits.	15	26	2	2	CO3
4	Sequential Logic Circuits.	15	26	2	2	CO4
5	Semiconductor memories.	8	16	2	1	CO5
	Total Periods/Marks	60	110	30	80	

	1. To familiarize with various number systems, postulates of Boolean algebra logic gates and logic circuits				
Course Objectives	2. To analyse the working of logic gates, combinational and sequential circuits and memories				
	3. To learn the practical importance and applications of digital electronic circuits				

CO No		COURSE OUTCOMES					
CO1	EC-303.1	Convert a number from one system to another system, implement logic					
COI	EC-303.1	circuits and analyse logic expressions.					
CO2	EC-303.2	Describe different logic families					
CO3	EC-303.3	Design combinational logic circuits					
CO4	EC-303.4	Construct different sequential logic circuits					
CO5	EC-303.5	Describe different semiconductor memories					

CO-PO/PSO MATRIX

<u>CO-1 O/1 3O MATRIX</u>										
CO No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
EC-303.1	3	3	1	1	1			3	1	
EC-303.2	3	3			1		1	3		
EC-303.3	3	3	3	1	1			3	1	1
EC-303.4	3	3	3	1	1			3	1	1
EC-303.5	3	3			1		1	3	1	1
Average	3	3	2.3	1	1		1	3	1	1

3=strongly mapped 2=moderately mapped 1=slightly mapped

LEARNING OUTCOMES:

1.0 Basics of Digital Electronics

- 1.1 i) Explain Binary, Octal, Hexadecimal number systems.
 - ii) Convert a given decimal number into Binary, Octal, and Hexadecimal number and vice versa
 - iii) Convert a given binary number into octal and hexadecimal number and vice versa
- 1.2 Perform binary addition, subtraction, multiplication and division.
- 1.3 i) Write 1's complement and 2's complement numbers for a given binary number.
 - ii) Perform subtraction of binary numbers in 2's complement method.
- 1.4 Compare weighted and Un-weighted codes.
- 1.5 Write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and viceversa.
- 1.6 Mention the use of alphanumeric codes (ASCII & EBCDIC)
- 1.7 State different postulates in Boolean algebra
- 1.8 Explain the basic logic gates AND, OR, NOT gates with their truth tables
- 1.9 Explain the working of universal logic gates (NAND, NOR gates) with truth tables
- 1.10 Explain the working of an Exclusive—OR gate with truth table
- 1.11 i) State De-Morgan's theorems
 - ii) Apply De-Morgan's theorems and other postulates to simplify Boolean expressions (up to three variables only)
- 1.12 Realize AND, OR, NOT operations using NAND, NOR gates
- 1.13 Explain standard representations for logical functions (SOP and POS form)
- 1.14 Write Boolean expressions from the given truth table
- 1.15 Write Boolean expressions for real life examples
- 1.16 Simplify Boolean Expression using Karnaugh map (up to 3 variables only)

2.0 Logic families

- 2.1 Classify logic families
- 2.2 List the important characteristics of Digital ICs of different logic families.
- 2.3 Define the terms: propagation delay, Noise margin, Fan-in, Fan-out and Power dissipation of digital ICs.
- 2.4 State the voltage and current logic levels of TTL and CMOS ICs.
- 2.5 Explain the working of Totem-pole output TTL NAND gate with circuit diagram.
- 2.6 Explain the working of open collector TTL NAND gate with circuit diagram.
- 2.7 Explain the working principle of CMOS Technology with diagram
- 2.8 Explain the working of CMOS NAND and CMOS NOR Gates with circuit diagram.
- 2.9 Compare the TTL, CMOS and ECL logic families.
- 2.10 List IC numbers of two input TTL Logic gates.

3.0 Combinational logic circuits

- 3.1 State the concept of combinational logic circuit.
- 3.2 i) Explain Half adder circuit using Ex-OR, AND gates
 - ii) Realize Half-adder using i) NAND gates only and ii) NOR gates only.
- i) Explain the operation of Full adder circuit with truth table using Ex-OR gate and basic gates.
 - ii)Realize full-adder using two Half-adders and an OR gate
- 3.4 Explain the working of 4 Bit parallel adder using full adders.