SET-1 **R20** Code No: R2021042

II B. Tech I Semester Supplementary Examinations, July - 2023 SWITCHINNG THEORY AND LOGIC DESIGN (Com to ECE, EIE, ECT)

Time: 3 hours Max. Marks: 70

11	Time. 5 hours			
Answer any FIVE Questions, each Question from each unit All Questions carry Equal Marks				
		UNIT-I		
1	a)	The solution to the quadratic equation $x^2-11x+22=0$ is $x=3$ and $x=6$. What is the base of number?	[5M]	
	b)	Convert the following to decimal and then to octal. (i)4204 ₁₆ (ii)1010011 ₂	[6M]	
	c)	Perform the following using BCD arithmetic $(79)_{10} + (177)_{10}$	[3M]	
		Or		
2	a)	Obtain the simplified POS and SOP expression for the function using k-maps: $F(A,B,C,D) = \Sigma(1,3,5,8,9,13) + \Sigma \ d(0,7,12,14)$	[8M]	
	b)	Obtain the dual of the following Boolean expressions (i) AB+A(B+C)+B'(B+D) (ii)A+B+A'B'C UNIT-II	[6M]	
3	a)	Simplify the following function using k-maps and implement the same using NAND gates. $F(A,B,C) = \Sigma(0,2,4,5,6,7)$	[7M]	
	b)	Briefly explain the tabulation procedure for the determination of prime implicants.	[7M]	
		Or		
4	a)	Draw and explain the operation of 4-bit binary adder-subtractor circuit.	[4M]	
	b)	Design a combinational circuit that converts a 4-bit binary number to 4-bit gray code number. Implement the circuit with Exclusive-OR gates. UNIT-III	[10M]	
5	a)	Realize full adder and full subtractor using 8:1 MUX.	[8M]	
	b)	Design a 3-bit priority encoder with one example.	[6M]	
		Or		
6	a)	Realize the following four boolean functions using PAL. $F_1(w,x,y,z) = \sum m(0,1,2,3,7,9,11)$ $F_2(w,x,y,z) = \sum m(0,1,2,3,10,12,14)$ $F_3(w,x,y,z) = \sum m(0,1,2,3,10,13,15)$ $F_4(w,x,y,z) = \sum m(4,5,6,7,9,15)$	[10M]	
	b)	Draw and explain the basic structure of PROM. 1 of 2	[4M]	

UNIT-IV

- 7 a) Draw the logic diagram of parallel-in, serial-out shift register and explain its operation. [6M]
 - b) Convert a D flip-flop to T flip-flop with an example.

[8M]

Or

- 8 a) Explain about Ring counter. [7M]
 - b) Explain the operation of the bi-directional shift register.

[7M]

UNIT-V

- 9 a) Design an FSM for serial sequence detector with the pattern "1010" with [10M] overlapping and with non-over lapping.
 - b) Give the comparison between Mealy and Moore models.

[4M]

Or

10 a) A sequential circuit has one input and one output. The state diagram is shown below: [10M]

Design the sequential circuit with JK flip-flop

b) Write a brief note on Finite State Machines.

[4M]