Code No: R2032423 (R20) (SET -1)

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE(AIML), CSE(AI), CSE(DS), CSE(AIDS), AIDS, AIML, CSD)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

All Questions Carry Equal Marks

Compare the features of the algorithm with pseudocode.

UNIT-I

[7M]

	b)	Find the Time complexity of the following code int fun(int n) { int count = 0; for (int i = n; i > 0; i /= 2) for (int j = 0; j < i; j++) count += 1; return count;} (OR)	[7M]
2.	a)	Explain the algorithm specification for conditional and iterative statements.	[7M]
	b)	Develop an algorithm to solve the Towers of Honai problem with n disks with three towers.	[7M]
3.	a)	Develop the control abstraction and derive the time expression for the divide and conquer logic.	[7M]
	b)	Derive the time complexity for the successful search in the binary search tree. (OR)	[7M]
4.	a)	Develop the quick sort algorithm and trace it for an example.	[7M]
	b)	Explain the method of vertex splitting with an example.	[7M]
5.	a)	<u>UNIT-III</u> Design the algorithm to find the shortest path in the multistage graph using forword approach	[7M]
	b)	Explain the 0/1 Knapsack problem in the dynamic programming approach.	[7M]
6.	a) b)	(OR) List and explain any two dynamic programming approaches with examples. Discuss the issues in designing reliable systems. UNIT-IV	[7M] [7M]
7.	a) b)	Illustrate the eight-queen problem with suitable diagrams. Develop the backtracking solution to the 0/1 Knapsack problem. (OR)	[7M] [7M]
8.	a)	Explain the advantages of backtracking algorithms in detail.	[7M]
	b)	Develop an algorithm to find all Hamiltonian cycles in graphs. UNIT-V	[7M]
9.	a) b)	Develop a non-deterministic algorithm to search for an element in an array. Explain NP-Hard and NP-Complete problem with example (OR)	[7M] [7M]
10.	a) b)	Explain the relation among P, NP, Np-complete and NP-hard problems. Explain the Cook's theorem. 1 of 1	[7M] [7M]

1.

a)

Code No: R2032423 (R20) (SET -2)

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE(AIML), CSE(AI), CSE(DS) CSE(AIDS), AIDS, AIML, CSD)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

All Questions Carry Equal Marks

UNIT-I List and explain the characteristics of the algorithm. 1. [7M] a) b) Develop an algorithm for selection sort. [7M] (OR) 2. Find the Time complexity of the following code [7M] int fun(int n) int count = 0; for (int i = n; i > 0; i /= 3) for (int j = 0; j < i; j=j+2) count += 1;return count; Discuss the design issues of iterative algorithms. b) [7M] **UNIT-II** 3. Derive the time complexity for the Unsuccessful search in the binary search a) [7M] b) Derive the time complexity of the logic that finds max and min numbers within [7M] an array. (OR) 4. Solve the recurrence relation. [7M] C(n)=2C(n/2)+3 if n>2 and 2 if n=2Develop the randomised quick sort algorithm and trace it for an example. b) [7M] 5. Define optimal binary search tree with example.. a) [7M] b) Explain traveling sales person problem with an example.. [7M] (OR) Develop the algorithm for the 0/1 knapsack problem using a dynamic 6. [7M] programming approach. Write a function Largest(pair,w, t, h, i,m) that uses binary search to determine [7M] the largest q, $t \le q \le h$, such that pair[q].w+w[i] $\le m$. **UNIT-IV** 7. Develop an algorithm to generate an m-coloring graph. [7M] Develop an algorithm to find all Hamiltonian cycles in graphs. b) [7M] 8. Compare planar and non-planar graphs with examples. a) [7M] Explain the steps in recursive backtracking with an example. b) [7M] 1 of 2

Code No: R2032423 (R20) (SET -2)

<u>UNIT-V</u>

9.	a)	List and explain any two NP-complete problems.	[7M]
	b)	Explain the Cook's theorem.	[7M]
		(OR)	
10.	a)	Is code generation an NP-hard problem? Justify your answer.	[7M]
	b)	Develop a non-determinsitic clique pseudocode.	[7M]

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE(AIML), CSE(AI), CSE(DS) CSE(AIDS), AIDS, AIML, CSD)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

All Questions Carry Equal Marks

UNIT-I

1. a) List and explain the parameters to assess the performance of the algorithm. [7M]

b) Compute the Space complexity for the following code int fun(int n)

[7M]

{ int count = 0; for (int i = n; i > 0; $i \neq 2$)

for (int j = 0; j < i; j++) count += 1;

return count; }

(OR)

2. a) Compare the Little-Oh and Theta notations with examples.

[7M]

b) Develop the randomised algorithm for primality testing.

[7M]

UNIT-II

3. a) Develop the merge sort algorithm and trace it for an example.

[7M]

b) Find out the strategy to reduce the complexity of matrix multiplication? Justify [7M] your answer.

(OR)

4. a) Derive the time complexity for Insertion sort.

[7M]

b) Develop an algorithm to find the Kth smallest number.

[7M]

UNIT-III

5. a) Compute the shortest path for the following graph using dynamic [7M] programming.

b) Illustrate the reliable system design using a dynamic programming approach in [7M] detail.

(OR)

6. a) Explain all pairs of shortest path problems with an example.

[7M]

b) Identify the possible binary search trees for the identifier set {do, while, if, [7M] else}.

1 of 2

(R20)

Code No: R2032423 (**R2**

SET -3

UNIT-IV

7.	a)	Explain graph coloring with examples.	[7M]
	b)	Let $w = \{5,7,10,12,15,18,20\}$ and $m=35$. Find all possible subsets of w that sum	[7M]
		to m. Do this using SumOfSub. Draw the portion of the state space tree that is	
		generated.	
		(OR)	
8.	a)	Illustrate the 4-Queen problem-solving with suitable diagrams.	[7M]
	b)	Develop the algorithm for recursive backtracking.	[7M]
		<u>UNIT-V</u>	
9.	a)	Develop a non-deterministic clique pseudocode.	[7M]
	b)	Explain the terms NP-hard and NP-complete.	[7M]
		(OR)	
10.	a)	List and explain any two NP-complete problems.	[7M]
	b)	Compare the features of deterministic and non-deterministic algorithms with	[7M]
		examples.	

SET-4 **R20** Code No: R2032423

III B. Tech II Semester Regular/Supplementary Examinations, May -2024 **DESIGN AND ANALYSIS OF ALGORITHMS**

(Common to CSE(AIML), CSE(AI), CSE(DS) CSE(AIDS), AIDS, AIML, CSD)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

		All Questions Carry Equal Marks	
***** UNIT-I			
1.	a)	Illustrate step table representation for the Fibonacci series computation	[7M]
	b)	algorithm. Find the Time complexity of the following code void fun(int n, int arr[]) { int i = 0, j = 0;	[7M]
		for (; i < n; ++i) while (j < n && arr[i] < arr[j]) j++;}	
2	-)	(OR)	[7] (1)
2.	a)	Compare the Big-Oh and Omega notations with examples.	[7M]
	b)	Given a 2-sided unbiased coin. Using this coin, how will you simulate an n-sided coin (i) When n is a power of 2?. (ii) When n is not a power of 2?	[7M]
		<u>UNIT-II</u>	
3.	a)	Develop an algorithm to Merge two sorted subarrays using auxiliary storage.	[7M]
	b)	Develop Greedy method control abstraction for the subset paradigm. (OR)	[7M]
4.	a)	Find the feasible solutions for the following instance of the knapsack problem: $n = 3, m = 20, (p_1, p_2, p_3) = (25, 24, 15),$ and $(w_1, w_2, w_3) = (18, 15, 10).$	[7M]
	b)	Develop the algorithm for Tree vertex splitting.	[7M]
		<u>UNIT-III</u>	
5.	a)	Explain the solution to the travelling salesperson problem with a dynamic programming approach.	[7M]
	b)	Formulate the cost function for finding the shortest path in the k-stage graph problem in dynamic programming.	[7M]
	,	(OR)	[7] A]
6.	a)	Explain flow shop scheduling with an example.	[7M]
	b)	Explain the features of dynamic programming. UNIT-IV	[7M]
7.	a)	With $m = 35$, run SumOfSub on the data	[7M]
		(a) $w = \{5,7,10,12,15,18,20\},$	r. 1
		(b) $w = \{20,18,15,12,107,5\}$	
		(c) $w = \{15,7,20,5,18,10,12\}.$	
	b)	Are there any differences in the computing times?	[7][1]
	b)	Develop the algorithm to solve the 8-queen problem. (OR)	[7M]
8.	a)	Develop an algorithm to solve the problem of the sum of subsets.	[7M]
	b)	Explain the steps in recursive backtracking with an example.	[7M]

Code No: R2032423 (R20)

UNIT-V

		OTHI V	
9.	a)	Develop an algorithm for non-deterministic knapsack.	[7M]
	b)	List and explain any two NP-complete problems.	[7M]
		(OR)	
10.	a)	Compare the features of deterministic and non-deterministic algorithms with examples.	[7M]
	b)	Illustrate the Node cover decision problem with a neat sketch.	[7M]