Code No: R2032043 (R20) (SET -1)

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70				
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****		
1.	a) b)	<u>UNIT-I</u> What is the condition for stability of an LTI system? Find the impulse response $h[n]$ of the system described by the difference equation $8y[n] + 6y[n-1] = x[n]$.	[7M] [7M]	
2.	a)	(OR) What are the conditions for stability and causality of an LTI system? Explain	[7M]	
	b)	For a system described by $8y [n[+ 4y [n - 1[+ y [n - 2[= x[n]]]]]]$ Find the response to a unit amplitude complex sinusoidal excitation at a DT cyclic frequency Ω .	[7M]	
		<u>UNIT-II</u>		
3.	a)	Explain the significance of FFT algorithms. Draw the basic butterfly diagram for radix - 2 DIT-FFT.	[7M]	
	b)	Find the DFT of $x[n]=\{0.5,0.5,0.5,0.5,-1,-1,-1,-1\}$ using decimation in time algorithm.	[7M]	
		(OR)		
4.	a)	What is FFT? How many multiplications and additions are required to compute N point DFT using redix-2 FFT?	[7M]	
	b)	State and prove convolution Properties of DFT.	[7M]	
5.	a)	<u>UNIT-III</u> Compare direct form I and direct form II realization of IIR systems.	[7M]	
	b)	Realize the following IIR system functions in the direct form I and II and also parallel form $H(Z)=1/(1+aZ^{-1})(1-bZ^{-1})$. (OR)	[7M]	
6.	a)	With an example explain the design procedure for Butterworth filter.	[7M]	
	b)	Give block diagram representation of linear constant-coefficient difference equations.	[7M]	
		<u>UNIT-IV</u>		
7.	a)	Draw the spectrum of rectangular window function.	[7M]	
	b)	What are the characteristics of linear phase FIR digital filters? (OR)	[7M]	
8.	a)	Design an FIR digital low pass filter with cutoff frequency 1.2 radian and length $N = 7$. Use frequency sampling method	[7M]	
	b)	What are the characteristics of FIR digital filters?	[7M]	
9.	a)	What is meant by bit reversed addressing mode? What is the application for	[7M]	
	b)	which this addressing mode is preferred? Draw the pipelined MAC configuration to perform convolution operation and explain with neat timing diagrams.	[7M]	
4.0		(OR)		
10.	a) b)	What do you mean by circular buffer? What are the architectural features of TMS320C5x DSP?	[6M] [8M]	

Code No: R2032043 (R20)

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

		<u>UNIT-I</u>	
1.	a)	State the time shifting property of z-transform.	[7M]
	b)	Determine the impulse response of the filter defined by $y(n)=x(n)+by(n-1)$. (OR)	[7M]
2.	a)	State and prove the properties of convolution.	[7M]
	b)	Give the frequency domain representation of discrete time signals.	[7M]
		UNIT-II	
3.	a)	Determine IDFT of the following	[7M]
		(i) $X(k) = \{1,1-j2,-1,1+j2\}$ (ii) $X(k) = \{1,0,1,0\}$	
	b)	Find the DFT of the sequence $x[n]=\{1,2,3,4,5,6,7,8\}$ using DIT FFT.	[7M]
		(OR)	
4.	a)	How is the FFT algorithm applied to determine inverse discrete Fourier transform?	[7M]
	b)	Derive the equation to implement a butterfly structure In DIFFFT algorithm.	[7M]
		<u>UNIT-III</u>	
5.	a)	Explain the differences between Direct form-I and Direct form-II structures.	[7M]
	b)	What is meant by frequency warping effect?	[7M]
		(OR)	
6.	a)	What are the basic building blocks of realization structures?	[7M]
	b)	Determine the cascade and parallel realization for the system transfer function $H(z) = 3(Z^2 + 5Z + 4) / (2Z + 1)(Z + 2)$.	[7M]
		<u>UNIT-IV</u>	
7.	a)	Draw the frequency response of digital low pass and high pass filters.	[7M]
	b)	Explain the frequency-sampling method of FIR filter design with an example. (OR)	[7M]
8.	a)	What conditions are to be satisfied by the impulse response of an FIR system in	[7M]
0.	u)	order to have a linear phase?	[/1/1]
	b)	Distinguish between IIR and FIR filters.	[7M]
	ŕ	<u>UNIT-V</u>	
9.	a)	What are the special addressing modes of DSP? Explain.	[7M]
	b)	Draw the configuration of a pipelined MAC unit.	[7M]
		(OR)	
10.	a)	Explain the purpose of six registers used in the TMS320C2X processor.	[7M]
	b)	What are the limitations of pipelining in Digital Signal Processor?	[7M]

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks **** **UNIT-I** 1. Explain the frequency response of discrete time system. [7M] Determine the frequency response for the system given by [7M] y(n)-3/4y(n-1)+1/8 y(n-2) = x(n)-x(n-1). Determine whether the following system given by $y(n) = log 10[\{x(n)\}]$ is 2. [7M] Casual or not. Show that an LTI system can be described by its unit sample response. [7M] **UNIT-II** 3. Explain the significance of FFT algorithms. Draw the basic butterfly diagram [7M] for radix - 2 DIT-FFT. b) Find the DFT of $x[n]=\{0.5,0.5,0.5,0.5,-1,-1,-1,-1\}$ using decimation in time [7M] algorithm. (OR) 4. Compute the DFT for the sequence (0.5,0.5,0.5,0.5,1,1,1,1) using DIF-FFT. [7M] State and prove convolution Properties of DFT. [7M] 5. Draw the direct form II structure for the given system [7M] $y(n) = y(n-1) - \frac{1}{2}y(n-2) + x(n) - x(n-1) + x(n-2)$ b) Explain Transposed forms. [7M] (OR) 6. Prove that FIR filter has linear phase if the unit impulse response satisfies the [7M] condition h(n)=h(N-1-n), n=0,1,.....M-1. Also discuss symmetric and antisymmetric cases of FIR filter. Why IIR filters do not have linear phase? [7M] **UNIT-IV** 7. Write some examples of multirate digital systems. [7M] What is a Kaiser window? In what way is it superior to other window b) [7M] functions? (OR) What is a Hamming window function? Obtain its frequency domain 8. [7M] characteristics. What is the impulse invariant technique? [7M] **UNIT-V** 9. Describe the multiplier/adder unit of TMS320c54xx processor with a neat [7M] block diagram. What are interrupts? What are the classes of interrupts available in the [7M] TMS320C5xx processor? (OR) 10. Explain the different types of interrupts in TMS320C54xx Processors. [7M] Describe any four data addressing modes of TMS320C54xx processor. [7M]

1 of 1

Code No: R2032043 (R20) (SET -4

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I State and prove final-value theorem of z-transform. 1. [7M] Determine the impulse response of the filter defined by y(n)=x(n)+by(n-1). [7M] 2. What are the basic elements of a DSP system? Explain. a) [7M] Test the following systems for time invariance $y(n)=n x^2(n)$. [7M] **UNIT-II** 3. Find the linear convolution of the sequences $x[n] = \{1,4,0,9,-1\}$ and $h[n] = \{-3,-1\}$ [7M] Find the IDFT of Y (k) = (1, 1, 1, 0). b) [7M] (OR) 4. What are the advantages FFT over DFT. [7M] Find the DFT of the sequence $x[n]=\{1,2,1,2,1,2,1,2\}$ using decimation in time [7M] algorithm. **UNIT-III** 5. Obtain the direct form I, direct form II and Cascade form realization of the [7M] following system functions. Y(n) = 0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6 x(n-1) + 0.6 x(n-2).Compare Chebyshev Filter and Butterworth Filter. [7M] (OR) 6. Obtain direct form I, direct form II and cascade realizations of system [7M] described by the equation, y[n]=y[n-1]-(1/2)y[n-2]+x[n]-x[n-1]+x[n-2]State and prove Parsvel's theorem. b) [7M] **UNIT-IV** 7. Explain the need for the use of window sequence in the design of FIR filter. [7M] Describe the window sequence generally used and compare the properties. Draw the indirect form realizations of FIR systems? [7M] (OR) 8. Compare Chebyshev Filter and Butterworth Filter. [7M] Explain the impulse invariance method of IIR filter design. [7M] **UNIT-V** What are the on-chip peripherals of programmable DSP? 9. [7M] Explain the difference between Von Neumann and Harvard architectures. [7M] Which architecture is preferred for DSP applications and why? 10. Explain what is meant by instruction pipelining. [7M] b) What is the use of MAC unit in DSP architecture? [7M]

1 of 1