SET -1

III B. Tech II Semester Regular Examinations, July -2023 IC APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

		All Questions Carry Equal Marks *****	
		UNIT-I	
1.	a)	List out different Ideal and Practical Characteristics of Op-amp.	[7M]
	b)	Draw the circuit diagram of Op-amp act as Integrator and explain its operation. (OR)	[7M]
2.	a)	Explain the operation of Op-amp along with block diagram in detail.	[7M]
	b)	Discuss about any two general linear applications of Op-amp.	[7M]
		UNIT-II	
3.	a)	Explain the operation of an astable multivibrator using 555 timer. Derive the expression for on and off state time periods.	[7M]
	b)	Explain the application of PLL as a FSK demodulator.	[7M]
		(OR)	
4.	a)	Draw and Explain the principles and description of individual blocks of PLL in detail.	[7M]
	b)	Draw the block diagram of Astable operations using IC 555 and derive its time constant.	[7M]
		UNIT-III	
5.	a)	Draw the block diagram of parallel Comparator type ADC and explain the operation of it.	[7M]
	b)	Explain any two types of ADCs.	[7M]
		(OR)	
6.	a)	Draw the circuit diagram of counter type ADC and explain its operation in detail.	[7M]
	b)	Draw the block diagram of successive approximation ADC and explain its operation in detail.	[7M]
		UNIT-IV	
7.	a)	Design BCD to gray code converter and realize using logic gates.	[7M]
	b)	Design a 1X8 demultiplexer using two 1X4 demultiplexer. (OR)	[7M]
8.	a)	Design a excess-3 adder using 4-bit parallel binary adder and logic gates.	[7M]
	b)	Write short notes on Magnitude Comparator in detail.	[7M]
9.	a)	<u>UNIT-V</u> Draw the schematic circuit of RS master slave flip flop. Give its truth table and	[7M]
		justify the entries in the truth table.	
	b)	Construct a JK flip flop using a D flip flop, a 2x1 multiplexer and an inverter. (OR)	[7M]
10.	a)	Draw the logic diagram of a SR latch using NOR gates. Explain its Operation using excitation table.	[7M]
	b)	Convert D flip-flop into T and JK flip-flops.	[7M]